Alternative Pipe Material Choice provides Trenchless Solution

Craig Vandaelle – Michels Canada
Jeff LeBlanc – Thompson Pipe Group
Case Study

City of Edmonton
Alberta, Canada
Case Study

Proposed 48” Diameter Sewer Pipeline
Case Study

Original Design

Specified Materials: PVC
RCP w/ Liner

Installation Method: Direct Bury

Burial Depth: Min. Depth 12 feet
Max. Depth 33 feet

Project Length: 2240 ft
Why do you need a liner?
Corrosion Resistant Pipe Materials

- PVC
- Fiberglass Pipe
- High Density Polyethylene (HDPE)
- Ductile Iron with Epoxy Liner
- Concrete with Plastic Liner
HDPE Lined Concrete Pipe

Concrete pipe

GSE StudLiner

Partial Section Thru Pipe

Concrete Pipe With GSE StudLiner
PVC Lined Concrete Pipe
PVC/HDPE Lined Concrete Pipe
PVC/HDPE Lined Concrete Pipe
Case Study

Difficult conditions

- Poor Soil Conditions
- High Water Table
- Potential High Sulphide Concentration

Significant risks caused bids to be considerably higher than expected.
Case Study

Alternate Proposal – Michels Canada

Â Trenchless Installation

Â Pipe Materials: 1. FRP Jacking Pipe

2. Steel Jacking Pipe w/ FRP Carrier Pipe (Two-Pass)

This Alternate Bid was Less Expensive than the Direct Bury Original Proposals
Case Study

FRP Jacking Pipe

Steel Jacking Pipe (Casing) for Two-Pass Tunnel Section
Case Study

Construction began April 2012 with a 20 months construction schedule
Case Study

Shafts
Â 11 shaft locations
Â Interlocking Steel Sheets
Â Dewatering Wells
Â Concrete Floor Slabs
Case Study

End Seal

- Low Strength Concrete
- Steel Face Plate
- 1 inch Thick Rubber

Launch Seal
Case Study

Akkerman SL52
Microtunneling Boring Machine (MTBM)
Case Study

Akkerman Jacking Frame
840 Tons Capacity
Case Study

11 Shafts for Microtunneling Operation
Case Study

Difficult conditions become more difficult

- Peat located directly above pipe zone
- Potential for pipe flotation
- Required additional geotechnical investigation
Case Study

What is Peat?

- Peat is highly organic soil derived mainly from plant remains.
- Extremely compressible
- Known to be problematic for pipe installations
FRP Lined Concrete Pipe
FRP Lined Concrete Pipe

The graphic is an example. The joint design can be customized to each project.
Product Comparisons

<table>
<thead>
<tr>
<th>Liner RCP Product</th>
<th>Corrosion Resistance</th>
<th>Joint Corrosion Protection Required</th>
<th>Gravity Sewer</th>
<th>Pressure Sewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC Liner</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>HDPE Liner</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>FRP Liner</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
FRP Lined Jacking Pipe
Case Study

Change of Microtunneling Pipe

• To reduce the risk of buoyancy due to peat zones, FRP Lined RCP Jacking Pipe in lieu of FRP Jacking Pipe

• FRP Lined RCP Jacking Pipe used in two of the five final tunnel drives.

• FRP Liner provided same corrosion resistance as FRP jacking pipe.
Case Study

- 1400 LF DN48 Flowcrete Jacking Pipe (FRP Lined RCP)
- Long jacking drive of 1000 ft
Case Study

Lessons Learned

- Value Engineering (creative solutions) can provide considerable cost savings.
- Alternate Materials provide added value to project and can reduce risk.
- Microtunneling (trenchless technology) can be a more cost effective solution than traditional open cut installation. Especially in poor soil conditions.
- Microtunneling can be successfully installed in difficult ground conditions.
Acknowledgements

Å The City of Edmonton Drainage Services Department

Å Michels Canada Co.

Å Stantec Consulting Ltd.

Å Alberta Transportation

Å My Special Thanks to “Peat”